An Experimental Study of pVTx Properties for Binary Mixtures of HFC-32 and HFC-125¹

T. Miyazaki 2,3 and K. Oguchi 2

An experimental study of the pressure-volume-temperature-composition (pVTx) properties for binary mixtures of HFC-32(CH₂F₂) and HFC-125(C₂HF₅) was conducted in the range of temperatures from 343 to 423 K, pressures from 4.0 to 15.6 MPa, densities from 485 to 491 kg·m⁻³, and compositions from 0.05 to 0.90 mole fraction of HFC-32, with uncertainties of 4.4 mK, 1.6 kPa, 0.02%, and 0.0004 mole fraction, respectively. The available experimental data for pVTx properties of binary mixtures of HFC-32 and HFC-125 have been compared with the equation of state developed by Tillner-Roth et al. From the critical evaluation, this equation of state should be revised in the range of low mole fractions of HFC-32.

KEY WORDS: data evaluation; experimental study; HFC-32/125 mixtures; pVTx properties.

1. INTRODUCTION

When blended HFC refrigerants are used for refrigerators and airconditioning machines, the compositions of the mixtures vary the most during liquid–vapor equilibrium changes. Therefore, the thermodynamic properties of refrigerant mixtures should be studied over a wide range of temperatures, pressures, and compositions.

This paper deals with an experimental study of pressure–volume–temperature–composition (pVTx) properties for binary mixtures of HFC-32

¹Paper presented at the Sixteenth European Conference on Thermophysical Properties, September 1–4, 2002, London, United Kingdom.

² Department of Mechanical Engineering, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan.

³ To whom correspondence should be addressed. E-mail: s021901@cce.kanagawa-it.ac.jp

 (CH_2F_2) and HFC-125 (C_2HF_5) conducted in the range of temperatures from 343 to 423 K, pressures from 4.0 to 15.6 MPa, densities from 485 to 491 kg·m⁻³, and compositions from 0.05 to 0.90 mole fraction of HFC-32. The available experimental data including the present measured data were compared with the equation of state developed by Tillner-Roth et al. [1] for these mixtures.

2. SURVEY OF AVAILABLE DATA OF *pVTx* PROPERTIES

The available experimental studies of the pVTx properties for binary mixtures of HFC-32 and HFC-125 have been compiled in the range of temperatures from 200 to 440 K, pressures from 0.09 to 35.3 MPa, densities from 2.6 to 1497 kg·m⁻³, and compositions from 0.20 to 0.90 mole fraction of HFC-32 as shown in Table I.

3. EXPERIMENTAL METHOD AND UNCERTAINTIES

A constant-volume apparatus with a cylindrical vessel of approximately 173 cm^3 internal volume was used for the present measurements of pVTx properties, as shown in Fig. 1. This experimental method was described in other publications [11–13]. The temperature was measured with the use of a platinum resistance thermometer calibrated within 2 mK at the National Physical Laboratory in the United Kingdom, based on the International Temperature Scale of 1990. The Ruska Series 6000 quartz Bourdon-type pressure gage was used for the measurements of pressure. The density was determined from the mass of the sample divided by the internal volume of the vessel. Uncertainties of temperature, pressure,

First author	Data	Temperature	Pressure	Density	Mole fraction
	points	range (K)	range (MPa)	range (kg·m ⁻³)	of HFC-32
Widiatmo [2]	24	280-310	0.88–2.3	940–1254	$\begin{array}{c} 0.20 - 0.90\\ 0.55\\ 0.65 - 0.78\\ 0.26 - 0.75\\ 0.37 - 0.61\\ 0.70 - 0.90\\ 0.50 - 0.70\\ 0.5\\ \end{array}$
Weber [3]	17	338-373	0.3–4.2	8.8–158.1	
Bivens [4]	111	280-373	0.49–4.8	13.7–206.5	
Zhelezny [5]	136	280-338	0.67–3.6	20–184	
Kiyoura [6]	104	320-440	1.72–5.2	67.7–158.1	
Sato [7]	156	320-440	1.78–5.3	50.4–125.1	
Zhang [8]	124	300-380	0.09–4.6	2.6–151.7	
Magee [9]	228	200-399	4.27–35.3	91.5–1497	

Table I. Available *pVTx* Properties for Binary Mixtures of HFC-32 and HFC-125

pVTx Properties for Mixtures of HFC-32 and HFC-125

A: Piezometer	J _{1,2} : Air piston pressure gage			
B: Diaphragm-type pressure balance detector	K: Pressure controller			
C: Transformer bridge	L: Thermostated bath			
D: Platinum resistance thermometer	M: Digital pressure gage			
E: Thermometer bridge	N _{1,2} :Nitrogen bottles			
F: dc null indicator	P: Bourdon-type pressure gauges			
G: Cooler	V: High-pressure valves			
H: Circular pump	←: Flow pattern of brine			
I: Heater				

Fig. 1. Schematic diagram of pVTx apparatus.

density, and composition measurements were within 4.4 mK, 1.6 kPa, 0.02% in density, and 0.0004 mole fraction, respectively. The purities of the samples of HFC-32 and HFC-125 were 0.99983 and 0.99962 mole fraction, respectively, as furnished by Mitui-du Pont Fluorochemical Co. Ltd.

4. RESULTS

Measurements of 79 data points of pVTx properties for binary mixtures of HFC-32 and HFC-125 were made in the range of temperatures from 343 to 423 K, pressures from 4.0 to 15.6 MPa, densities from 485 to 491 kg·m⁻³, and compositions from 0.05 to 0.90 mole fraction of HFC-32, as shown in Table II.

HFC-125										
Temp. (K)	Press. (MPa)	Density (kg·m ⁻³)	Mole fract. of HFC-32	Temp. (K)	Press. (MPa)	Density (kg·m ⁻³)	Mole fract. of HFC-32			
343.233	3.9784	491.33	0.0520	413.140	9.4705	487.04	0.2009			
353.149	4.6786	491.04	0.0520	423.286	10.2215	486.75	0.2009			
363.143	5.3771	490.75	0.0520	343.160	4.3240	489.15	0.3005			
373.219	6.0772	490.46	0.0520	353.150	5.1417	488.86	0.3005			
383.129	6.7624	490.17	0.0520	363.148	5.9537	488.57	0.3005			
393.094	7.4481	489.89	0.0520	373.150	6.7652	488.28	0.3005			
403.277	8.1443	489.60	0.0520	383.160	7.5743	488.00	0.3005			
413.154	8.8178	489.32	0.0520	393.140	8.3783	487.71	0.3005			
423.073	9.4897	489.04	0.0520	403.171	9.1839	487.42	0.3005			
343.313	4.0256	489.12	0.0819	413.181	9.9840	487.14	0.3005			
353.195	4.7326	488.83	0.0819	423.244	10.7856	486.85	0.3005			
363.150	5.4355	488.55	0.0819	343.269	4.5922	487.42	0.5013			
373.150	6.1381	488.26	0.0819	353.169	5.5145	487.13	0.5013			
383.150	6.8362	487.98	0.0819	363.176	6.4492	486.85	0.5013			
				372.779	7.3474	486.57	0.5013			
393.158	7.5313	487.69	0.0819	383.322	8.3327	486.26	0.5013			
403.093	8.2168	487.41	0.0819	393.001	9.2375	485.99	0.5013			
413.073	8.9013	487.13	0.0819	403.127	10.1828	485.70	0.5013			
423.245	9.5952	486.84	0.0819	412.948	11.0952	485.42	0.5013			
343.078	4.0377	489.99	0.1015	423.081	12.0358	485.13	0.5013			
353.197	4.7715	489.70	0.1015	353.160	5.8422	488.40	0.6998			
363.150	5.4850	489.41	0.1015	363.155	6.9396	488.10	0.6998			
373.184	6.2000	489.13	0.1015	373.150	8.0475	487.81	0.6998			
383.158	6.9066	488.84	0.1015	383.141	9.1602	487.52	0.6998			
393.151	7.6108	488.56	0.1015	393.161	10.2782	487.23	0.6998			
403.182	8.3142	488.27	0.1015	403.161	11.3959	486.94	0.6998			
413.159	9.0094	487.99	0.1015	413.163	12.5138	486.65	0.6998			
423.162	9.7032	487.70	0.1015	423.129	13.6256	486.37	0.6998			
343.150	4.1123	489.38	0.1508	353.160	6.0454	488.45	0.8992			
				363.181	7.3705	488.15	0.8992			
353.181	4.8602	489.09	0.1508	373.160	8.7219	487.86	0.8992			
363.142	5.5956	488.80	0.1508	383.169	10.0931	487.56	0.8992			
373.172	6.3327	488.51	0.1508	393.161	11.4715	487.27	0.8992			
383.141	7.0611	488.23	0.1508	403.178	12.8607	486.98	0.8992			
393.185	7.7923	487.94	0.1508	413.186	14.2517	486.68	0.8992			
403.122	8.5126	487.66	0.1508	423.181	15.6405	486.40	0.8992			
413.209	9.2392	487.37	0.1508							
423.142	9.9520	487.09	0.1508							
343.156	4.1854	489.05	0.2009							
353.171	4.9553	488.76	0.2009							
363.150	5.7147	488.47	0.2009							
373.165	6.4731	488.18	0.2009							

Table II. Experimental Results for pVTx Properties of Binary Mixtures of HFC-32 and
HFC-125

383.118

393.150

403.119

7.2237

7.9775

8.7235

487.89

487.61

487.32

0.2009

0.2009

0.2009

Fig. 2. Pressure deviations of available pVTx properties [3–10] from the equation of state [1] (densities from 30 to 220 kg·m⁻³); (-)Weber and Defibaugh [3], (+) Bivens et al. [4], (×) Zhelezny et al. [5], (\triangle) Kiyoura et al. [6], (**X**) Sato et al. [7],(\Diamond) Zhang et al. [8], (\circ) Magee and Haynes [9], (\Box)Kleemiß [10].

Fig. 3. Pressure deviations of the present results and Magee and Haynes result [9] from the equation of state [1]; (\Box) this work, densities from from 485 to 491 kg·m⁻³; (\circ) Magee and Haynes [9], densities from 406 to 592 kg·m⁻³.

Fig. 4. Density deviations of Widiatmo et al. results [2] from the equation of state [1];
(▲) Widiatmo et al. [2], densities from 940 to 1254 kg·m⁻³.

Fig. 5. Density deviations of Magee and Haynes results [9] from the equation of state [1]; (Δ) densities from 1493 to 1497 kg·m⁻³, (\Diamond) densities from 1443 to 1447 kg·m⁻³, (\Box) densities from 1392 to 1396 kg·m⁻³, (\diamond) densities from 1330 to 1335 kg·m⁻³, (\times) densities from 1270 to 1276 kg·m⁻³, (+) densities from 1206 to 1211 kg·m⁻³, (*) densities from 1121 to 1127 kg·m⁻³, (\blacktriangle) densities from 1026 to 1033 kg·m⁻³, (\bullet) densities from 888 to 893 kg·m⁻³.

5. DISCUSSION

Comparisons of the available experimental data of pVTx properties with the equation of state [1] are shown in Figs. 2–5. Most of the available data between 0.6 and 0.8 mole fraction HFC-32 in the gaseous region agree within $\pm 0.5\%$ in pressure as compared to the equation of state of Tillner-Roth [1]. The present measured data agree with the data by Magee et al. [9] within $\pm 0.1\%$ in pressure, as shown in Fig. 3.

6. CONCLUSION

Experimental pVTx data for binary mixtures of HFC-32 and HFC-125 were obtained with the use of a constant-volume apparatus in the range of temperatures from 343 to 423 K, pressures from 4.0 to 15.6 MPa, densities from 485 to 491 kg·m⁻³, and compositions from 0.05 to 0.90 mole fraction of HFC-32. The available data are compared with the equation of state of Ref. 1, and it is revealed that the equation of state does not represent the experimental pVTx properties data in the range of low mole fractions of HFC-32 within experimental uncertainty. Additional experimental data of thermodynamic properties for these mixtures are required for developing a more accurate equation of state.

ACKNOWLEDGMENTS

The authors are greatly indebted to the Mitui-du Pont Fluorochemical Co. Ltd. for furnishing and analyzing the samples of HFC-32 and HFC-125. Mr. Yasuhiro Ogata is gratefully acknowledged for his assistance with the present measurements. Financial support of the Grant-in-Aid for Scientific Research Fund by the Ministry of Education, Culture, Sports, Science and Technology (Project No.11650237) is also gratefully acknowledged.

REFERENCES

- 1. R. Tillner-Roth, J. Li, A. Yokozeki, H. Sato, and K. Watanabe, *Thermodynamic Properties* of Pure and Blended Hydrofluorocarbon (HFC) Refrigerants (JSRAE, 1998), pp. 7–70.
- 2. J. V. Widiatmo, H. Sato, and K. Watanabe, High Temp. High. Press. 25:677 (1993).
- 3. L. A. Weber and D. R. Defibaugh, Int. J. Thermphys. 15:863 (1994).
- 4. D. B. Bivens, A. Yokozeki, and V. Z. Geller, Proc. 4th Asian Thermophy. Props. Conf., Vol. 2, Tokyo, Japan (1995), p. 327.
- 5. V. Zhelezny, Y. Chernyak, V. Anisimov, Y. Semenyuk, and P. Zhelezny, Proc. 4th Asian Thermophy. Props. Conf. Vol. 2, Tokyo, Japan (1995), p. 335.
- 6. H. Kiyoura, J. Uchida, H. Sato, and K. Watanabe, J. Chem. Eng. Data 41:1409 (1996).

- 7. T. Sato, H. Kiyoura, H. Sato, and K. Watanabe, Int. J. Thermphys. 17:43 (1996).
- 8. H. L. Zhang, H. Sato, and K. Watanabe, J. Chem. Eng. Data 41:1401 (1996).
- 9. J. W. Magee and W. M. Haynes, Int. J. Thermophys.21:113 (2000).
- 10. M. Kleemiß, Fortschr. -Ber. VDI 19:1 (1997).
- 11. K. Oguchi, M. Yamagishi, and A. Murano, Fluid Phase Equilib. 80:131 (1992).
- 12. K. Oguchi, A. Murano, K. Omata, and N. Yada, Int. J. Thermophys. 17:55 (1996).
- 13. K. Oguchi, K. Amano, T. Namiki, and N. Umezawa, Int. J. Thermophys. 20:1667 (1999).